Documents and Resources
Shortcuts by Topic:
- SASS 2000/2300 air samplers: Journal articles and technical documents
- SASS 3000/3100 air samplers: Journal articles and technical documents
- RAPTOR bioassay: Journal articles and technical documents
- General Tech Notes
Please take advantage of the search box above when seeking specific information.
Safety Data Sheets (SDS)
- RAPTOR and Biohawk Assay Coupons / Reagents
- Swine Protectant (P/N 7000-0000-01)
- SASS 3010 Extraction Kit (P/N 7000-162-234-02)(U.S.)
- SASS 3010 Extraction Kit (P/N 7000-162-234-02) (E.U.)
- SASS 3010 Extraction Fluid (P/N 7000-162-233 (U.S.)
- SASS 3010 Extraction Fluid (P/N 7000-162-233) (E.U.)
- SASS 3010 Wash Fluid (P/N 7000-162-132) (U.S./E.U.)
- SASS 2300/2400 Buffer Salts (P/N 7000-159-011) (U.S./E.U.)
- QuikTest Bioscreen (P/N 1670-0350-01)
Research Papers and Internal Documents by Product
ASAP CBRN Systems
- ASAP II Automated Mailroom Detection Systems (4/1/11)
- ASAP V Postal Room Overview (December 19, 2013)
SASS 2000 Series Wet Air Samplers
Internal Documents
- SASS 2300 Datasheet
- SASS 2400 Datasheet
- A Field Portable Avian Flu Detection System Using the SASS 2300 Air Sampler and PCR Methods
- A Comparison of Portable Aerosol Samplers
- Decontaminating the SASS 2300 Wetted-Wall Air Sampler
- Suitability of SASS 2300 Sample Vials and SASS 3010 Sample Vials for use with Hand-Held Assays
- SASS 2300 Power Measurements And Battery Life Estimates
- Automated Aerosol Collection and Nucleic Acid Purification Using the SASS 2300 Air Sampler
- SASS 2300 Technology used in APDS Monitoring System
Papers and Journal Articles
- Guo Z. et al.
Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerging Infectious Disease 2020;26(7):1583-1591. - Dungan, R.S., Leytem, A.B., Verwey, S.A., Bjorneberg, D.L.
Assessment of bioaerosols at a concentrated dairy operation. Aerobiologia (2010) 26:171–184. - M. POHANKA, P. SKLÁDAL
Bacillus anthracis, Francisella tularensis and Yersinia pestis. The Most Important Bacterial Warfare Agents — review. Folia Microbiol 54 (4), 263–272 (2009). - M. LE Brun, C. Bouteleux, M. Binet
Metrological Evaluation of a System of Collection of Biological Aerosols in a Cooling Tower of a French Nuclear Power Plant. EDF R&D National Laboratory of Hydraulics and Environment, 6 quai Watier, Chatou, F 78401 Cedex 01 France. - Petr Skládal, Miroslav Pohanka, Eva Kupská and Bohuslav Šafář
Biosensors for Detection of Francisella Tularensis and Diagnosis of Tularemia. Masaryk University, Brno; Military Technical Institute of Protection, Brno; Military Academy, Hradec Králové, Czech Republic, Biosensors, Book edited by: Pier Andrea Serra, ISBN 978-953-7619-99-2, pp. 302, February 2010, INTECH, Croatia. - Janet Martha Blatny, Else Marie Fykse, Bjorn Anders P. Reif, Oyvind Andreassen, Gunnar Skogan, Jaran Strand Olsen and Viggo Waagen
Tracking pathogenic biological agents in air - A case study of the outbreak of legionellosis in Norway, Norwegian Defence Research Establishment (FFI) Kjeller, Norway. - Jana Kesavan, K. Aubrey Hottell
Characteristics and Sampling Efficiencies of the Smart Air Sampler System (SASS) 2000 Plus, Research and Technology Directorate, Edgewood Chemical and Biological Center, December 2004. - Marius Dybwad, Per Einar Granum, Per Bruheim and Janet Martha Blatny
Characterization of Airborne Bacteria at an Underground Subway Station Applied and Environmental Microbiology p. 1917–1929, January 13, 2012. - Robert S. Dungan
Use of a culture-independent approach to characterize aerosolized bacteria near an open-freestall dairy operation, Environment International 41 (2012) 8–14. - Eva Švábenská
Systems for Detection and Identification of Biological Aerosols, Masaryk University, Brno, Czech Republic, Defence Science Journal, Vol. 62, No. 6, November 2012, pp. 404-411. - Ching-Wen Chang and Pei-Yu Hung
Methods for Detection and Quantification of Airborne Legionellae Around Cooling Towers, Aerosol Science and Technology, 46:369–379, 2012. - Gossett A. Campbell, David deLesdernier, Raj Mutharasan
Detection of airborne Bacillus anthracis spores by an integrated system of an air sampler and a cantilever immunosensor, Sensors and Actuators B 127 (2007) 376–382. - Robert S. Dungan, April B. Leytem
Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations, World J Microbiol Biotechnol (2009) 25:1505–1518. - John Conroy
Developing biodefense IVDs is still a priority, IVD Technology • April 2006 p. 37. - Petr Skládal
Electrochemical and Piezoelectric Immunosensors for Detection of Bioagents, Gruppo Divisionale Sensori III Workshop, Università degli Studi di Firenze 26 – 28 Ottobre 2010, p.17. - P. Skladal, E. Svabenska, J Zeravik, J. Pribyl, P. Siskova, T. Tharnhage, I. Gustafson
Electrochemical Immunosensor Coupled to Cyclone Air Sampler for Detection of Escherichia coli DH5a in Bioaerosols, Electroanalysis 2012, 24, No. 3, 539 – 546. - Sharon K. Hietala, Pamela J. Hullinger, Beate M. Crossley, Hailu Kinde, Alex A. Ardans
Environmental air sampling to detect exotic Newcastle disease virus in two California commercial poultry flocks, J Vet Diagn Invest 17:198–200 (2005). - W. Bergman, J. Shinn, R. Lochner, S. Sawyer, F. Milanovich, R. Mariella Jr.
High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor, Aerosol Science, December 22, 2004. - Janet Martha Blatny, Else Marie Fykse, Jaran Strand Olsen, Gunnar Skogan and Tone Aarskaug
Identification of biological threat agents in the environment and its challenge, Norwegian Defence Research Establishment (FFI), July 15th 2008. - Janet Martha Blatny, Bjorn Anders P. Reif, Gunnar Skogan, Oyvind Andreassen, E. Arne Hoiby, Dag Aanonsen, Ingeborg S Aaberge and Dominique A. Caugant
Tracking Airborne Legionella and Legionella pneumophila at a Biological Treatment Plant, Environ. Sci. Technol. 2008, 42(19), 7360-7. - Janet Martha Blatny, Gunnar Skogan, Bjørn Anders Pettersson Reif, Øyvind Andreassen, Gunn Merethe Bjørge Thomassen, Tone Aarskaug, Else Marie Fykse and Jaran Strand Olsen
Sampling and identification of Legionella spp. at Borregaard Ind. Ltd., Norwegian Defence Research Establishment (FFI) May 7th 2007. - Janet Martha Blatny, Jaran Strand Olsen, Øyvind Andreassen, Viggo Waagen and Bjørn Anders Pettersson Reif
Tracking Legionella in air generated from a biological treatment plant - A case study of the outbreak of legionellosis in Norway, Norwegian Defence Research Establishment (FFI), Kjeller, Norway. - Mary T. McBride, Don Masquelier, Benjamin J. Hindson, Anthony J. Makarewicz, Steve Brown, Keith Burris, Thomas Metz, Richard G. Langlois, Kar Wing Tsang, Ruth Bryan, Doug A. Anderson, Kodumudi S. Venkateswaran, Fred P. Milanovich and Bill W. Colston, Jr.
Autonomous Detection of Aerosolized Bacillus anthracis and Yersinia pestis. Analytical Chemistry
SASS 3000 Series Dry Air Samplers
Internal Documents
- SASS 3100 Datasheet
- SASS 3010 Datasheet
- Collecting Radioactive Aerosols with the SASS Air Samplers
- SASS 3100 Filter Comparison
- Influenza Virus Collection and Detection from Electret Filters (May 9, 2012)
- Evaporation Rates for Microorganisms Captured by Research International’s Electret Filters
- SASS 3100 Power Measurements And Battery Life Estimates
- SASS 3100 Test Chamber Illustration
- Internal Test Report, SASS 3100 Filter Collection Efficiency after Design Change, May 2019
Journal Articles
- Ang, A., Luhung, I., Ahidjo, B. et al. (2021).
Airborne SARS-CoV-2 surveillance in hospital environment using high-flowrate air samplers and its comparison to surface sampling. Indoor Air. 2021;00:1–10. DOI: 10.1111/ina.12930. - Bell, N. (2020).
Environmental Sampling and Next-generation Sequencing as a Novel Approach for the Detection and Characterization of Influenza A Virus (IAV) in Swine. A thesis submitted for Master of Science degree, Laboratory Medicine and Pathobiology, University of Toronto, 2020. https://www.proquest.com/openview/87faa922164611724fce9ec8df7e1cb5/1?pq-origsite=gscholar&cbl=18750&diss=y. - Bergeron, K., Rossi,F., Létourneau, V., Larios, A., Godbout, S., Fournel, S., Duchaine, C. (2024).
Bioaerosols in Eastern Canadian Dairy Barns Using Tie- and Free-Stall Housing. Applied Engineering in Agriculture Vol. 40(1): 111-122, ISSN 0883-8542. https://doi.org/10.13031/aea.15720. - Bhardwaj, J., Hong, S., Jang, J., et al. (2021).
Recent advancements in the measurement of pathogenic airborne viruses. Journal of Hazardous Materials 420 (2021) 126574. https://doi.org/10.1016/j.jhazmat.2021.126574. - Bøifot, K., Gohli, J., Skogan, G., Dybwad, M. (2020).
Performance evaluation of high-volume electret filter air samplers in aerosol microbiome research. Environmental Microbiome 15, 14 (2020). https://doi.org/10.1186/s40793-020-00362-x. - Bøifot, K., Skogan, G., Dybwad, M. (2024).
Sampling efficiency and nucleic acid stability during long‑term sampling with different bioaerosol samplers. Environ Monit Assess 196, 577 (2024). https://doi.org/10.1007/s10661-024-12735-7. - Boucher, M., Lecours, P., Letourneau, V. et al. (2018).
Organic components of airborne dust influence the magnitude and kinetics of dendritic cell activation. Toxicology in Vitro 50 (2018) 391–398. https://doi.org/10.1016/j.tiv.2018.04.011. - Brassard, P., Baghdadi, M., Letourneau, V., et al. (2023).
Measurement of fugitive emissions from manure spreading operations in a controlled environment . 2023 ASABE Annual International Meeting 2301383. https://doi.org/10.13031/aim.202301383. - Chemical, Biological, Radiological, & Nuclear Information Resource Center (CBRN IRC), CBRN.IRC@us.army.mil (2012).
Smart Air Sampler System 3100 [Fact Sheet]. U.S. Department of Defense. - Dinoi, A., Feltracco, M., Chirizzi, D., Trabucco, S., Conte, M., Gregoris, E. (2022).
A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmission. Science of the Total Environment 809 (2022) 151137. https://doi.org/10.1016/j.scitotenv.2021.151137. - Drautz-Moses, D., Luhung, I., Gusareva, E., et al. (2021).
Vertical stratification of the air microbiome in the lower troposphere. PNAS 2022 Vol. 119 No. 7 e2117293119. https://doi.org/10.1073/pnas.2117293119. - Dubuis, M., M’Bareche, H., Veillette, M., Bakhiyi, B., Zayed, J., Lavoie, J., Duchaine, C. (2017).
Bioaerosols concentrations in working areas in biomethanization facilities. Journal of the Air & Waste Management Association, ISSN: 1096-2247 (Print) 2162-2906. https://doi.org/10.1080/10962247.2017.1356762. - Dybwad, M., Skogan, G., Blatny, J. (2014).
Temporal Variability of the Bioaerosol Background at a Subway Station: Concentration Level, Size Distribution, and Diversity of Airborne Bacteria. Appl Environ Microbiol 80:. https://doi.org/10.1128/AEM.02849-13. - Fang, Z., Zhang, Y., Wu, X., et al. (2021).
New explicit correlations for the critical sticking velocity and restitution coefficient of small adhesive particles: A finite element study and validation . Journal of Aerosol Science 160 (2022) 105918. https://doi.org/10.1016/j.jaerosci.2021.105918. - Franchitti, E., pascale, E., Fea, E., et al. (2020).
Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. Atmosphere 2020, 11, 452 . doi.org/10.3390/atmos11050452. - Fritz, B. (2011).
Evaluation of SASS Filters. PNNL-SA-83251 prepared for the US Department of Energy, Contract DE-AC05-76RL01830. - George, P., Rossi, F., St-Germain, M. et al. (2022).
Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in transmission and Detection of Antibacterial Resistance Genes. Antibiotics 2022, 11, 974. https://doi.org/10.3390/antibiotics11070974. - Gohli J., Anderson A., Brantsæter A., et al. (2022).
Dispersion of SARS-CoV-2 in air surrounding COVID-19-infected individuals with mild symptoms. Indoor Air. 2022;32:e13001. https://doi.org/10.1111/ina.13001. - Green, D., Zhou, J., Desouza, C. (2021).
Transport For London SARS-CoV-2 RNA Sampling Study . Imperial College London Environmental Research Group, Feb. 12, 2021. https://tfl.gov.uk/cdn/static/cms/documents/covid-sampling-paper-phase-1.pdf. - Gusareva, E., Acerbi, E., Lau, K., et al. (2019).
Microbial communities in the tropical air ecosystem follow a precise diel cycle. PNAS November 12, 2019, Vol. 116, No. 46, 23299-23308. www.pnas.org/cgi/doi/10.1073/pnas.1908493116. - Hlaing, P., Junqueira, A., Uchida, A., et al. (2019).
Complete Genome Sequence of Brachybacterium sp. Strain SGAir0954, Isolated from Singapore Air. Microbiol Resource Announcements 8:e00619-19. https://doi.org/10.1128/MRA.00619-19. - Kesavan, J., Schepers, D., Sutton, T., Deluca, P., Williamson., M., Wise, D. (2010).
Characteristics, Sampling Efficiency, and Battery Life of Smart Air Sampler System (SASS) 3000 and SASS 3100. Edgewood Chemical Biological Center, Research and Technology Directorate, November 2010. - Kesavan, J., Schepers, D., Sutton, T., et al. (2011).
Characteristics, Sampling Efficiency, and Battery Life of Smart Air Sampler System (SASS) 3000 and SASS 3100. Edgewood Chemical Biological Center. - Laforge, P. (2022).
Metagenomic characterization of the microbial ecosystem of the pork value chain. Master's Thesis, Laval University. http://hdl.handle.net/20.500.11794/73202. - Lemieux, J., Veillette, M., Mbareche, H., Duchaine, C., (2019).
Re-aerosolization in liquid-based air samplers induces bias in bacterial diversity. Aerosol Science and Technology 2019, VOL. 53, NO. 11, 1244–1260.https://doi.org/10.1080/02786826.2019.1652242 . - Letourneau, V., et al. (2025).
Hunting for a viral proxy in bioaerosols of swine buildings using molecular detection and metagenomics. Journal of Environmental Sciences, Volume 148, February 2025, Pages 69-78. https://doi.org/10.1016/j.jes.2023.08.017. - Leung, M., Tong, X., Bøifot, K., et al. (2021).
Characterization of the public transit air microbiome and resistome reveals geographical specificity. Microbiome (2021) 9:112. https://doi.org/10.1186/s40168-021-01044-7. - Luhung, I., Lim, S., Uchida, A., et al. (2024).
Understanding diel bioaerosol patterns in mold-affected buildings through metagenomic surveillance. Building and Environment, Volume 253, 1 April 2024, 111264. https://doi.org/10.1016/j.buildenv.2024.111264. - Luhung, I., Uchida, A., Lim, S., et al. (2021).
Experimental parameters defining ultra-low biomass bioaerosol analysis. npj Biofilms and Microbiomes (2021) 7:37. https://doi.org/10.1038/s41522-021-00209-4. - Marcelloni, A., Pigini, D., Chiominto, A. et al. (2023).
Exposure to airborne mycotoxins: the riskiest working environments and tasks. Annals of Work Exposures and Health, Volume 68, Issue 1, January 2024, Pages 19–35. https://doi.org/10.1093/annweh/wxad070. - Mbareche, H., Dion-Dupont, V., Veillette, M., Brisebois, E., Lavoie, J., Duchaine, C. (2022).
Influence of seasons and sites on bioaerosols in indoor wastewater treatment plants and proposal for air quality indicators. Journal of the Air & Waste Management Association, 72(9), 1000–1011. https://doi.org/10.1080/10962247.2022.2066735. - Mbareche, H., Veillette, M., Bilodeau, G., Cuchaine, C. (2022).
Bioaerosol Sampler Choice Should Consider Efficiency and Ability of Samplers To Cover Microbial Diversity. Appl Environ Microbiol 84:e01589-18. https://doi.org/10.1128/AEM.01589-18. - Mbareche, H., Veillette, M., Dion-Dupont, V. et al. (2021).
Microbial composition of bioaerosols in indoor wastewater treatment plants. Aerobiologia 38, 35–50 (2022). https://doi.org/10.1007/s10453-021-09732-5. - McLean, D., leblanc-Maridor, M., Hall, R., et al. (2018).
Airborne Dispersion of Leptospirosis in a Meat Processing Plant. Occup Environ Med 2018;75(Suppl 2):A1–A650. 10.1136/oemed-2018-ICOHabstracts.605. - Parker, A., Donald, S., Fischer, J., et al. (2020).
Review of Field Sampling Technologies for Characterizing Bioaerosols in Compact Spaces . Air Force Research Laboratory, 711th Human Performance Wing, No. AFRL-SA-WP-TR-2020-0048. https://apps.dtic.mil/sti/pdfs/AD1103675.pdf. - Pilote, j., Letourneau, V., Girard, M., Duchaine, C. (2019).
Quantification of airborne dust, endotoxins, human pathogens and antibiotic and metal resistance genes in Eastern Canadian swine confinement buildings. Aerobiologia (2019) 35:283–296. https://doi.org/10.1007/s10453-019-09562-6. - Salambanga, F., Wingert, L., Valois, I., et al. (2022).
Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. Environmental Research 212 (2022) 113597. https://doi.org/10.1016/j.envres.2022.113597. - Silva P.G., Branco P., Soares R., Mesquita J., Sousa S. (2022).
A systematic review on the methodologies for detection and infectivity. Indoor Air. 2022;32:e13083. https://doi.org/10.1111/ina.13083. - Skogan, G., Dybwad, M. (2021).
SASS 3100 high-volume electret filter air sampler-sampling and recovery efficiency. FFI report 21/00314, Electronic ISBN 978-82-464-3343-1 . http://18.195.19.6/handle/20.500.12242/2881. - Skogan, G.,Bøifot, K., Orr, R., Dybwad, M., Enger, E., Bunkan, A., Gohli., J. (2022).
Characterization of the chemical, biological and radiological environment in the Arctic World Archive. Norwegian Defence Research Establishment FFI report 22/02102, Dec. 16, 2022. http://hdl.handle.net/20.500.12242/3126. - St-Germain, M. et al. (2024).
Airborne dust and bioaerosols in Canadian conventional and alternative houses for laying hens. Journal of Occupational and Environmental Hygiene, Journal of Occupational and Environmental Hygiene, DOI: 10.1080/15459624.2024.2406240 - Su, B., Hao, J. (2017).
Air quality inside subway metro indoor environment worldwide: A review. Environmental International 107 (2017) 33-46. http://dx.doi.org/10.1016/j.envint.2017.06.016. - Tan, D., Kozak, R., Qamar, A. et al. (2024).
Protocol for the Mpox Prospective Observational Cohort Study (MPOCS) among individuals with mpox in Canada. Future Virology, 18(17), 1089–1102. https://doi.org/10.2217/fvl-2023-0189. - Xu, B., Hao, J. (2017).
Air quality inside subway metro indoor environment worldwide: A review. Environment International 107 (2017) 33–46. https://doi.org/10.1016/j.envint.2017.06.016. - Yang, X., Haleem, N., Osabutey, A. et al. (2022).
Particulate Matter in Swine Barns: A Comprehensive Review. Atmosphere 2022, 13(3), 490. https://doi.org/10.3390/atmos13030490.
RAPTOR 4-Channel Bioassay System
Internal Documents
- Sandwich Assays Performed with Research International's Existing Bioassay Platform.
- Detection of Proteins with RAPTOR (PowerPoint chart).
- RAPTOR Assay Coupons.
- Detection of E.coli0157:H7Spiked in Hamburger (PowerPoint chart)
Journal Articles
- Anderson, G.P., et al. (2000).
RAPTOR: A Portable, Automated Biosensor, Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington DC 20375, Proceedings of the First Conference on Point Detection for Chemical and Biological Defense, Oct., 2000. - Nanduri, V. et al. (2006).
Antibody Immobilization on Waveguides Using a Flow–Through System Shows Improved Listeria monocytogenes Detection in an Automated Fiber Optic Biosensor: RAPTOR, Sensors 2006, 6, 808-822. https://doi.org/10.3390/s6080808 - Geng T., et al. (2004).
Detection of Low Levels of Listeria monocytogenes Cells by Using a Fiber-Optic Immunosensor, Applied And Environmental Microbiology, Oct. 2004, p. 6138–6146 Vol. 70, No. 10. DOI: 10.1128/AEM.70.10.6138–6146.2004 - Donaldson, K. et al. (2004).
A rapid detection method for Vaccinia virus, the surrogate for smallpox virus, Biosensors and Bioelectronics, Volume 20, Issue 2, 2004, Pages 322-327, ISSN 0956-5663, https://doi.org/10.1016/j.bios.2004.01.029 - Valadez, A. et al. (2009).
Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food, Sensors 2009, 9, 5810-5824; DOI:10.3390/s90705810. - Morgan, M. T. et al. (2006).
Binding Inhibition Assay Using Fiber-Optic Based Biosensor for the Detection of Foodborne Pathogens. Key Engineering Materials, 321–323, 1145–1150. https://doi.org/10.4028/www.scientific.net/kem.321-323.1145. - Geng, T. et al. (2006).
Fiber-Optic Biosensor Employing Alexa-Fluor Conjugated Antibody for Detection of Escherichia coli O157:H7 from Ground Beef in Four Hours, Sensors 2006, 6, 796-807. https://doi.org/10.3390/s6080796 - Kim, G. Y. et al. (2006).
Detection of Listeria Monocytogenes Using an Automated Fiber-Optic Biosensor: RAPTOR. In Key Engineering Materials (Vols. 321–323, pp. 1168–1171). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/kem.321-323.1168 - Kramer, M. F., & Lim, D. V. (2004).
A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds. Journal of food protection, 67(1), 46–52.https://doi.org/10.4315/0362-028x-67.1.46
General Tech Notes
- The Use of Eppendorf Pipette Tips as Incubation Tubes
- A Method for Quickly Detecting Pathogenic Microbes by Fluorescent Immunoassay, by Hiroshi Nakagawa
- Using the Canon PR610-2 to Develop Assays for Biowarfare Agents
- Canon PR610-2 Fluorescence Immunoassay Optical Waveguide System Procedures
- Candidate Disinfectants for Research International Products
- High Speed Multiple-Analyte Chemical Detectors for Continuous Monitoring
- Comparison Table of Research International Air Sampler Products
- Development of Highly Sensitive and Quick Determination Using Fluorescent Immunoassay – Examination of Inhibitors, by Yuka Ohyama