Product Bibliography
Topics
- SASS® 2000 Series Wet Air Samplers
- SASS® 3000 Series Dry Air Samplers
- RAPTOR™ Bioidentifier
- Analyte 2000™
- FAST 2000™
- Hazard Card
For articles on other specific topics or related technologies, try using the search box at the top of the page.
SASS 3000 Series Dry Air Samplers
Journal Articles
- Bøifot, K.O., Gohli, J., Skogan, G., Dybwad, M., Performance evaluation of high-volume electret filter air samplers in aerosol microbiome research, Environmental Microbiome (2020) 15:14
- Jana Kesavan, Deborah Schepers, Tiffany Sutton, Paul Deluca, Michael Williamson and Daniel Wise, CHARACTERISTICS, SAMPLING EFFICIENCY, AND BATTERY LIFE OF SMART AIR SAMPLER SYSTEMS (SASS) 3000 AND SASS 3100, Edgewood Chemical Biological Center, Research and Technology Directorate, November 2010.
- Marius Dybwad, Characterization of Airborne Bacteria at a Subway Station: Implications for Testing and Evaluation of Biological Detection, Identification, and Monitoring Systems, Thesis for the degree of Philosophiae Doctor (PhD) Norwegian University of Science and Technology, Faculty of Natural, Sciences and Technology, Department of Biotechnology, Norwegian Defence Research Establishment, Protection and Societal Security Division, Oslo 2014
- Marius Dybwad, Einar Granum, Bruheim and Janet Martha Blatny, Characterization of Airborne Bacteria at an Underground Subway Station, Applied and Environmental Microbiology p. 1917–1929.
- BG Fritz, Evaluation of SASS Filters, Pacific Northwest National Laboratory, September 2011.
- Marius Dybwad, Gunnar Skogan, Janet Martha Blatny, Temporal Variability of the Bioaerosol Background at a Subway Station: Concentration Level, Size Distribution, and Diversity of Airborne Bacteria, January 2014 Volume 80 Number 1 Applied and Environmental Microbiology p. 257–270.
- US Department of Defense SASS 3100 Fact Sheet, Chemical, Biological, Radiological, & Nuclear Information Resource Center (CBRN IRC).
Journal Articles Concerning the SASS 2000 Series Wet air samplers
- Guo Z. et al., Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020, Emerg Infect Dis. 2020;26(7):1583-1591.
- Robert S. Dungan, April B. Leytem, Sheryl A. Verwey, David L. Bjorneberg, Assessment of bioaerosols at a concentrated dairy operation, Assessment of bioaerosols at a concentrated dairy operation, Aerobiologia (2010) 26:171–184.
- M. POHANKA, P. SKLÁDAL, Bacillus anthracis, Francisella tularensis and Yersinia pestis. The Most Important Bacterial Warfare Agents — review, Folia Microbiol. 54 (4), 263–272 (2009).
- M. LE Brun, C. Bouteleux, M. Binet, METROLOGICAL EVALUATION OF A SYSTEM OF COLLECTION OF BIOLOGICAL AEROSOLS IN A COOLING TOWER OF A FRENCH NUCLEAR POWER PLANT, EDF R&D, National Laboratory of Hydraulics and Environment, 6 quai Watier, Chatou, F 78401 Cedex 01 France.
- Petr Skládal, Miroslav Pohanka, Eva Kupská and Bohuslav Šafář, Biosensors for Detection of Francisella Tularensis and Diagnosis of Tularemia, Masaryk University, Brno; Military Technical Institute of Protection, Brno; Military Academy, Hradec Králové, Czech Republic, Biosensors, Book edited by: Pier Andrea Serra, ISBN 978-953-7619-99-2, pp. 302, February 2010, INTECH, Croatia.
- Janet Martha Blatny, Else Marie Fykse, Bjorn Anders P. Reif, Oyvind Andreassen, Gunnar Skogan, Jaran Strand Olsen and Viggo Waagen, Tracking pathogenic biological agents in air - A case study of the outbreak of legionellosis in Norway, Norwegian Defence Research Establishment (FFI) Kjeller, Norway.
- Jana Kesavan, K. Aubrey Hottell, CHARACTERISTICS AND SAMPLING EFFICIENCIES OF THE SMART AIR SAMPLER SYSTEM (SASS) 2000 Plus, Research and Technology Directorate, Edgewood Chemical and Biological Center, December 2004.
- Marius Dybwad, Einar Granum, Bruheim and Janet Martha Blatny, Characterization of Airborne Bacteria at an Underground Subway Station, Applied and Environmental Microbiology p. 1917–1929, January 13, 2012.
- Robert S. Dungan, Use of a culture-independent approach to characterize aerosolized bacteria near an open-freestall dairy operation, Environment International 41 (2012) 8–14.
- Eva Švábenská, Masaryk University, Systems for Detection and Identification of Biological Aerosols, Brno, Czech Republic, Defence Science Journal, Vol. 62, No. 6, November 2012, pp. 404-411.
- Ching-Wen Chang and Pei-Yu Hung, Methods for Detection and Quantification of Airborne Legionellae Around Cooling Towers, Aerosol Science and Technology, 46:369–379, 2012.
- Gossett A. Campbell, David deLesdernier, Raj Mutharasan, Detection of airborne Bacillus anthracis spores by an integrated system of an air sampler and a cantilever immunosensor, Sensors and Actuators B 127 (2007) 376–382.
- Robert S. Dungan, April B. Leytem, Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations, World J Microbiol Biotechnol (2009) 25:1505–1518.
- John Conroy, Developing biodefense IVDs is still a priority, IVD Technology • April 2006 p. 37.
- Petr Skládal, Electrochemical and Piezoelectric Immunosensors for Detection of Bioagents, Gruppo Divisionale Sensori III Workshop Università degli Studi di Firenze 26 – 28 Ottobre 2010, p.17.
- P. Skladal, E. Svabenska, J Zeravik, J. Pribyl, P. Siskova, T. Tharnhage, I. Gustafson, Electrochemical Immunosensor Coupled to Cyclone Air Sampler for Detection of Escherichia coli DH5a in Bioaerosols, Electroanalysis 2012, 24, No. 3, 539 – 546.
- Sharon K. Hietala, Pamela J. Hullinger, Beate M. Crossley, Hailu Kinde, Alex A. Ardans, Environmental air sampling to detect exotic Newcastle disease virus in two California commercial poultry flocks, J Vet Diagn Invest 17:198–200 (2005).
- W. Bergman, J. Shinn, R. Lochner, S. Sawyer, F. Milanovich, R. Mariella Jr., High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor, Aerosol Science, December 22, 2004.
- Janet Martha Blatny, Else Marie Fykse, Jaran Strand Olsen, Gunnar Skogan and Tone Aarskaug, Identification of biological threat agents in the environment and its challenge, Norwegian Defence Research Establishment (FFI), July 15th 2008.
- Janet Martha Blatny, Bjorn Anders P. Reif, Gunnar Skogan, Oyvind Andreassen, E. Arne Hoiby, Dag Aanonsen, Ingeborg S Aaberge and Dominique A. Caugant, Tracking Airborne Legionella and Legionella pneumophila at a Biological Treatment Plant, Environ. Sci. Technol. 2008, 42(19), 7360-7.
- Janet Martha Blatny, Gunnar Skogan, Bjørn Anders Pettersson Reif, Øyvind Andreassen, Gunn Merethe Bjørge Thomassen, Tone Aarskaug, Else Marie Fykse and Jaran Strand Olsen, Sampling and identification of Legionella spp. at Borregaard Ind. Ltd., Norwegian Defence Research Establishment (FFI) May 7th 2007.
- Mary T. McBride, Don Masquelier, Benjamin J. Hindson, Anthony J. Makarewicz, Steve Brown, Keith Burris, Thomas Metz, Richard G. Langlois, Kar Wing Tsang, Ruth Bryan, Doug A. Anderson, Kodumudi S. Venkateswaran, Fred P. Milanovich and Bill W. Colston, Jr., Autonomous Detection of Aerosolized Bacillus anthracis and Yersinia pestis, Analytical Chemistry
- W. Bergman, J. Shinn, R. Lochner, S. Sawyer, F. Milanovich, R. Mariella Jr., "High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor," J. Aerosol Science, 36(5-6), 619-638 (2005).
- Janet Martha Blatny, Bjorn Anders P., Gunnar Skoga,n Oyvind Andreassen, E .Arne Hoiby, Eirik Ask, Viggo Waagen, Dag Aanonsen, Ingeborg S. Aaberge and Dominique A. Caugant, "Tracking Airborne Legionella and Legionella pneumophila at a Biological Treatment Plant", Norwegian Defence Research Establishment (FFI), Kjeller, Norway, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway, Environmental Science and Technology, (8/20/2008).
RAPTOR™ Evanescent Wave Biosensor
Journal Articles
- Viswaprakash Nanduri, Giyoung Kim, Mark T. Morgan, Daniel Ess, Byoung-Kwon Hahm, Aparna Kothapalli, Angela Valadez, Tao Geng and Arun K. Bhunia, "Antibody Immobilization on Waveguides Using a Flow-Through System Shows Improved Listeria moncytogenes Detection in an Automated Fiber Optic Biosensor: RAPTOR™", Sensors, 6, 808-822 (2006).
- Giyoung Kim, Mark T. Morgan, Daniel Ess, Byoung-Kwon Hahm, Aparna Kothapalli, Angela Valadez and Arun Bhunia, "Detection of Low Levels of Listeria monocytogenes Using an Automated Fiber-optic Biosensor: RAPTOR", Key Engineering Materials Vols. 321-323 (2006) pp. 1168-1171.
- George P. Anderson, Nandan L. Nerukar, "Improved fluoroimmunoassays using Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor," Journal of Immunological Methods, 27, 17-24 (2002).
- M. F. Kramer and D. V.Lim, "A Rapid and Automated Fiber Optic-Based Biosensor Assay for the Detection of Salmonella in Spent Irrigation Water Used in the Sprouting of Sprout Seeds," Journal of Food Protection, 67, 46-52 (2004).
- G. P. Anderson, B. M. Lingerfelt, and C. Rowe-Taitt, “Eight Analyte Detection Using a Four-Channel Optical Biosensor,” Sensor Letters, 2, 18-24 (2004).
- D. V. Lim, “Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors,” Proc. IEEE 91, 902-907 (2003).
- T. B. Tims and D. V. Lim, "Confirmation of viable E. coli O157:H7 by enrichment and PCR after rapid biosensor detection," Journal of Microbiological Methods, 55, 141-147 (2003).
- C. C. Jung, E. W. Saaski, D. A. McCrae, B. M. Lingafelt and G. P. Anderson, "RAPTOR: A Fluoroimmunoassay-Based Fiber Optic Sensor for Detection of Biological Threats," IEEE Sensors Journal, 3, 352-360 (2003).
- G. P. Anderson and C. A. Rowe-Taitt, “ Water quality monitoring using an automated portable fiber optic biosensor: RAPTOR,” SPIE Proceedings, 4206, (March 2001).
- G. P. Anderson, C. A. Rowe-Taitt, and F. S. Ligler, “RAPTOR: A Portable, Automated Biosensor,” First Conference on Point Detection for Chemical and Biological Defense (October 2000).
- Ellen R. Goldman, Mehran P. Pazirandeh, J. Matthew Mauro, Keeley D. King, Julie C. Frey and George P. Anderson, ” Phage-displayed peptides as biosensor reagents,” Journal of Molecular Recognition, 13 (6), 382 – 387, 2000.
- D. V. Lim, “Rapid Pathogen Detection in the New Millennium,”National Food Processors Association (NFPA) Journal, 13 – 17 (October 2000).
- G. P. Anderson, K. D. King, K. L. Gaffney, and L. H. Johnson, “Multi-Analyte Interrogation Using the Fiber Optic Biosensor,” Biosensors & Bioelectronics, 14, 771 – 777 (2000).
- K. D. King, et al., “Detecting Staphylococcal Enterotoxin B Using an Automated Fiber Optic Biosensor,” Biosensors & Bioelectronics, 14, 163 – 170 (1999).
- E. W. Saaski and C. C. Jung, “A Family of Low-Power Bioassay Devices,” MASINT Biological Defense Science and Technology Symposium Proceedings, Patrick AFB, FL (1998).
Magazine/Newspaper Articles Concerning the RAPTOR™
- C. Aston, "Biological Warfare Canaries," IEEE Spectrum, 35-39 (October 2001).
- K. R. Rogers and C. L. Gerlach, “Update on Environmental Biosensors,”Environmental Science & Technology, 4, 500 – 506 (December 1999).
- J. Ouellette, “Biosensors: Microelectronics marries biology,”The Industrial Physicist, 3, 11 – 14 (September 1998).
Analyte 2000™
Journal Articles and Presentations
- Angela M. Valadez, Carlos A. Lana, Shu-I Tu, Mark T. Morgan and Arun K. Bhunia, "Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food", Sensors 2009, 9, 5810-5824.
- Tao Geng, Joe Uknalis, Su-I Tu and Arun K. Bhunia, "Fiber-Optic Biosensor Employing Alexa-Fluor Conjugated Antibody for Detection of Escherichia coli O157:H7 from Ground Beef in Four Hours", Sensors 2006, 6, 796-807.
- Mark T. Morgan, a, Giyoung Kim, Daniel Ess, Aparna Kothapalli, Byoung-Kwon Hahm, and Arun Bhunia, "Binding Inhibition Assay Using Fiber-Optic Based Biosensor For The Detection Of Foodborne Pathogens", Key Engineering Materials Vols. 321-323 (2006) pp. 1145-1150 (2006).
- K. A. Donaldson, M. F. Kramer and D. V. Lim, "A rapid detection method for Vaccinia virus, the surrogate for smallpox virus," Biosensors and Bioelectronics, 20, 322-327 (2004).
- Tao Geng,1 Mark T. Morgan,2 and Arun K. Bhunia1, "Detection of Low Levels of Listeria monocytogenes Cells by Using a Fiber-Optic Immunosensor." Applied and Environmental Microbiology, Oct. 2004, p. 6138-6146.
- D. R. DeMarco, and D. V. Lim, “Detection of Escherichia coli O157:H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides,” J. Food Prot, 596-602 (2002).
- D. Lim, "Rapid Biosensor Detection of Foodborne Microbial Pathogens," Microbiological methods Forum News, 18, 13-17 (June 2001).
- D. V. Lim, “Rapid Pathogen Detection in the New Millennium,”National Food Processors Association (NFPA) Journal, 13 – 17 (October 2000).
- I. B. Bakaltcheva, F. S. Ligler, C. H. Patterson, and L. C. Shriver-Lake, “Multi-Analyte Explosive Detection using a Fiber Optic Sensor,” Analytica Chima Acta, 399, 13 – 20 (1999).
- N. Nath and M. Eldefrawi, J. Wright, D. Darwin and M. Huestis, “A Rapid Reusable Fiber Optic Biosensor for Detecting Cocaine Metabolites in Urine,”Journal of Analytical Toxicology, 23, 460 – 467 (1999).
- D. R. DeMarco, et al., “Rapid Detection of Escherichia coli O157:H7 in Ground Beef Using a Fiber Optic Biosensor,”Journal of Food Protection, 62, 711 – 716 (1999) - Abstract.
- J. O. Spiker, K. A. Kang, W. N. Drohan, and D. F. Bruley, “Preliminary Study of Biosensor Optimization for the Detection of Protein C,”Oxygen Transport to Tissue XX, Plenum Press, New York, 681-688 (1998).
- I. B. Bakaltcheva, L. C. Shriver-Lake, and F. S. Ligler, “A Fiber Optic Biosensor for Multianalyte Detection: Importance of Preventing Fluorophore Aggregation,”Sensors and Actuators B, 51, 46 – 51 (1998).
- F. S. Ligler, et al., “Remote Sensing Using an Airborne Biosensor,”Environmental Science & Technology, 32, 2461-2466 (1998).
- B. A. Rowe, et al., “Rapid Detection of D-dimer Using a Fiber Optic Biosensor,”Thromb. Haemost., 79, 94 – 98 (1998).
- U. Narang, et al., “Enhanced Biosensor Performance Using an Avidin-Biotin Bridge for Antibody Immobilization,”Proc. SPIE-Int. Soc. Opt. Eng., 2980 (Advance in Fluorescence Sensing Technology III), 187 – 194 (1997).
- B. L. Donner, et al., “Transition from Laboratory to On-Site Environmental Monitoring of 2,4,6-Trinitrotoluene Using a Portable Fiber Optic Biosensor,”ACS Symposium Series, 657 (Immunochemical Technology for Environmental Applications), 198 – 209 (1997).
- J. P. Golden, et al., “Portable Multichannel Fiber Optic Biosensor for Field Detection,”Optical Engineering, 36, 1008 – 1013 (1997).
- U. Narang, et al., “Fiber Optic-Based Biosensor for Ricin,”Biosensor & Bioelectronics, 12, 937 – 945 (1997).
- L. C. Shriver-Lake, B. L. Donner, and F. S. Ligler, “On-Site Detection of TNT with a Portable Fiber Optic Biosensor,”Environmental Science & Technology, 31, 837 – 841 (1997).
- L. A. Tempelman, et al., “Quantitating Staphylcoccal Enterotoxin B in Diverse Media Using a Portable Fiber Optic Biosensor,”Analytical Biochemistry, 233, 50 – 57 (1996).
- G. P. Anderson, K. A. Breslin, and F. S. Ligler, “Assay Development for a Portable Fiber Optic Biosensor,”ASAIO Journal, 42, 942 – 946 (1996).
- K. Cao, G. P. Anderson, F. S. Ligler J. and Ezzel, “Detection of Yersinia pestis fraction 1 antigen with a fiber optic biosensor,” J. Clin. Microbiol. 33, 336-341 (1995).
- E. W. Saaski, M. Bizak, and J. Yeatts, “Multimode Evanescent Wave-based Sensors: Enhancement Strategies,”Proc. SPIE-Int. Soc. Opt. Eng., 2574 (Pacific Northwest Fiber Optic Workshop), 56 – 63 (1995).
Magazine/Newspaper Articles Concerning the Analyte 2000™
- B. Hoyle, "High-Tech Biosensor Speeds Bacteria Detection," ASM News, 9, 434-435 (September 2001).
- M. D. Wheeler, “Sensor Warns of Biological Warfare,”Photonics Spectra, 9, 36 (September 1997).
- C. Beal, “An Invisible Enemy,”Jane’s Defence Magazines, International Defense Review, Vol. 28, 36 – 41 (March 1995).
- K. Lewotsky, “Taper enhances sensitivity of immunoassay sensor,”Laser Focus World, pp. 46-52 (June 1997).
Related Journal Articles Concerning Evanescent Wave Fiber Optic Biosensors
- G. P. Anderson, et al., “Quantifying Serum Antiplague Antibody with a Fiber Optic Biosensor,”Clinical and Diagnostic Laboratory Immunology, 5, 609 – 612 (1998).
- L. C. Shriver-Lake, et al., “Antibody Immobilization Using Heterobifunctional Crosslinkers,”Biosensors & Bioelectronics, 11, 1101 – 1106 (1997).
- G. P. Anderson, et al., “Effectiveness of Protein A for Antibody Immobilization for a Fiber Optic Biosensor,”Biosensors & Bioelectronics, 4, 329 – 336 (1997).
- E. A. James, K. Schmeltzer, and F. S. Ligler, “Detection of Endotoxin Using an Evanescent Wave Fiber Optic Biosensor,”Applied Biochemistry and Biotechnology, 60, 189 – 202 (1996).
- R. M. Wadkins, J. P. Golden, and F. S. Ligler, “Simultaneous Measurement of Cy5.5-Labeled Capture Antibodies and Cy5-Labeld Antigens in a Fiber Optic Biosensor,”Proc. SPIE-Int. Soc. Opt. Eng., 2676 (Biomedical Sensing, Imaging, and Tracking Technologies I), 148 – 155 (1996).
- L. C. Shriver-Lake, et al., “Detection of TNT in Water Using an Evanescent Wave Fiber Optic Biosensor,”Analytical Chemistry, 67, 2431 – 2435 (1995).
- L. C. Shriver-Lake, et al., “Use of Three Longer Wavelength Fluorophores with the Fiber Optic Biosensor,”Sensors and Actuators B, 29, 25 – 30 (1995).
- D. Wijesuriya, et al., “Regeneration of Immobilized Antibodies on Fiber Optic Probes,”Biosensor & Bioelectronics, 9, 585 – 592 (1994).
- L. C. Shriver-Lake, R. A. Ogert, and F. S. Ligler, “An Fiber Optic Evanescent Wave Immunosensor for Large Molecules,”Sensors and Actuators B, 11, 239 – 243 (1993).
- R. A. Ogert, et al., “Detection of Clostridium botulinium Toxin A Using a Fiber Optic-Based Biosensor,”Analytical Biochemistry, 205, 306 – 312 (1992).
- L. C. Shriver-Lake, et al., “The Effect of Tapering the Optical Fiber on Evanescent Wave Measurements,”Analytical Letters, 25, 1183 – 1199 (1992).
FAST 2000™ Flow Displacement Immunoassay
Journal Articles and Presentations
- Y.-C. Shia, et al., “A Portable, Rapid, and Sensitive Immunosensor for a New Class of Insecticide,”paper G-04, First North-African and Middle Eastern Symposium on Environmental and Sanitary Analytical Chemistry, Hammamet, Tunisia (7 – 11 March 1999).
- A. W. Kusterbeck and P. T. Charles, “Field Demonstration of a Portable Flow Immunosensor,”Field Anal. Chem. Tech., 2, 341 – 350 (1998).
- A. W. Kusterbeck, P. R. Gauger, and P. T. Charles, “Portable Flow Immunosensor for Detecting Drugs and Explosives,”Proc. SPIE-Int. Soc. Opt. Eng., 2937 (Chemistry- and Biology-Based Technologies for Contraband Detection), 191 – 196 (1997).
- H. K. Powell, et al., “Advanced Flow Immunoassay Techniques,”paper SCHB-8, 213th National ACS Meeting, San Francisco, CA (13 – 17 April 1997).
Magazine/Newspaper Articles Concerning the FAST 2000™
- K. R. Rogers and C. L. Gerlach, “Update on Environmental Biosensors,”Environmental Science & Technology, 4, 500 – 506 (December 1999).
- J. Ouellette, “Biosensors: Microelectronics marries biology,”The Industrial Physicist, 3, 11 – 14 (September 1998).
Related Journal Articles Concerning Flow Displacement Immunoassays
- S. Y. Rabbany, et al., “A Membrane-Based Displacement Flow Immunoassay,”Biosensors & Bioelectronics, 13, 939 – 944 (1999).
- S. Y. Rabbeny, et al., “Dissociation Rate Kinetics in a Solid-Phase Flow Immunoassay,”Analytical Letters, 31, 1663 – 1675 (1998).
- S. Y. Rabbeny, et al., “Assessment of Heterogeneity in Antibody-Antigen Displacement Reactions,”Analytical Chemistry, 69, 175 – 182 (1997).
- J. C. Bart, L. J. Judd, and A. W. Kusterbeck, “Environmental Immunoassay for the Explosive RDX Using a Fluorescent Dye-Labeled Antigen and the Continuous Flow Immunosensor,”Sensors and Actuators B, 38-39, 411 – 418 (1997).
- J. C. Bart, et al., “Application of a Portable Immunosensor to Detect the Explosives TNT and RDX in Ground Water Samples,”Environmental Science and Technology, 31, 1505 – 1511 (1997).
- J. C. Bart, et al., “Detection and Quantitation of the Explosives 2,4,6-Trinitrotoluene and Hexahydro-1,3,5-trinitro-1,3,5-triazine in Ground Water Using a Continuous Flow Immunosensor,”ACS Symposium Series, 657 (Immunochemical Technology for Environmental Applications), 210 – 220 (1997).
- P. T. Charles, et al., “Continuous Flow Fluorescence Based Immunosensor for the Detection of Explosives and Environmental Pollutants,”Proc. SPIE-Int. Soc. Opt. Eng., 3105 (Chemical, Biochemical, and Environmental Fiber Sensors IX) 80 – 87, (1997).
- L. L. Judd, et al., “An Antibody-Based Fluorometric Assay for Detection of the Explosives TNT and PETN,”Proc. SPIE-Int. Soc. Opt. Eng., 2388 (Advances in Fluorescence Sensing Technology II), 198 – 204 (1995).
- S. Y. Rabbeny, et al., “Binding Kinetics of Immobilized Antibodies in a Flow Immunosensor,”Sensors and Actuators B, 29, 72 – 78 (1995).
- S. Y. Rabbeny, et al., “Effect of Antibody Density on the Displacement Kinetics of a Flow Immunoassay,”J. of Immunological Methods, 168, 227 – 234 (1994).
- A. W. Kusterbeck, et al., “Flow Immunosensor Detection of Explosives and Drugs of Abuse,”Proc. SPIE-Int. Soc. Opt. Eng., 2092 (Substance Detection Systems, 218 – 226 (1993).
- J. P. Whelan, et al., “Continuous Flow Immunosensor for Detection of Explosives,”Analytical Chemistry, 65, 3561 – 3565 (1993).
- G. A. Wemhoff, et al., “Kinetics of Antibody Binding at Solid-Liquid Interfaces in Flow,”J. of Immunological Methods, 156, 223 – 230 (1992).
- R. A. Ogert, et al., “Detection of Cocaine Using the Flow Immunosensor,”Analytical Letters, 25, 1999 – 2019 (1992).
- A. W. Kusterbeck, et al., “A Continuous Flow Immunoassay for Rapid and Sensitive Detection of Small Molecules,”J. of Immunological Methods, 135, 191 – 197 (1990).
Electrochemical Sensing Technology
Magazine/Newspaper Articles Concerning the Hazard Card™
- S. Wilhelm, “DOE official predicts long-term interest in state,”Puget Sound Business Journal, 23 (October 1994).
- C. Park, “Little high-tech firm scores big Energy Dept. grant,”Puget Sound Business Journal, 9 (September 1994).
- J. Swenson, “Partners with the public,”Journal American, pp. C1-C3 (September 1994.)